Risk Bounds for Infinitely Divisible Distribution

نویسندگان

  • Chao Zhang
  • Dacheng Tao
چکیده

In this paper, we study the risk bounds for samples independently drawn from an infinitely divisible (ID) distribution. In particular, based on a martingale method, we develop two deviation inequalities for a sequence of random variables of an ID distribution with zero Gaussian component. By applying the deviation inequalities, we obtain the risk bounds based on the covering number for the ID distribution. Finally, we analyze the asymptotic convergence of the risk bound derived from one of the two deviation inequalities and show that the convergence rate of the bound is faster than the result for the generic i.i.d. empirical process (Mendelson, 2003).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing VaR and AVaR In Infinitely Divisible Distributions

In this paper we derive closed-form solutions for the cumulative density function and the average value-at-risk for five subclasses of the infinitely divisible distributions: classical tempered stable distribution, Kim-Rachev distribution, modified tempered stable distribution, normal tempered stable distribution, and rapidly decreasing tempered stable distribution. We present empirical evidenc...

متن کامل

Simulation of Infinitely Divisible Random Fields

Abstract. Two methods to approximate infinitely divisible random fields are presented. The methods are based on approximating the kernel function in the spectral representation of such fields, leading to numerical integration of the respective integrals. Error bounds for the approximation error are derived and the approximations are used to simulate certain classes of infinitely divisible rando...

متن کامل

On Free and Classical Type G Distributions

There is a one-to-one correspondence between classical one-dimensional infinitely divisible distributions and free infinitely divisible distributions. In this work we study the free infinitely divisible distributions corresponding to the one-dimensional type  distributions. A new characterization of classical type  distributions is given first and the class of type  classical infinitely divi...

متن کامل

Conditionally Positive Definite Kernels and Infinitely Divisible Distributions

We give a precise characterization of two important classes of conditionally positive definite (CPD) kernels in terms of integral transforms of infinitely divisible distributions. In particular, we show that for any stationary CPD kernel A(x, y) = f(x − y), f is the log-characteristic function of a uniquely determined infinitely divisible distribution; further, for any additive CPD kernel A(x, ...

متن کامل

Modeling of ‎I‎nfinite Divisible Distributions Using Invariant and Equivariant Functions

‎Basu’s theorem is one of the most elegant results of classical statistics‎. ‎Succinctly put‎, ‎the theorem says‎: ‎if T is a complete sufficient statistic for a family of probability measures‎, ‎and V is an ancillary statistic‎, ‎then T and V are independent‎. ‎A very novel application of Basu’s theorem appears recently in proving the infinite divisibility of certain statistics‎. ‎In addition ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011